Group rings whose units form an FC-group: Corrigendum

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Group Rings Whose Units Form an Fc-group

Let U(KλG) be the group of units of an infinite twisted group algebra KλG over a field K. We describe the maximal FC-subgroup of U(KλG) and give a characterization of U(KλG) with finitely conjugacy classes. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus’ theorem.

متن کامل

The Units of Group-rings

when addition and multiplication are defined in the obvious way, form a ring, the group-ring of G over K, which will be denoted by R (G, K). Henceforward, we suppose that K has the modulus 1, and we denote the identity in G by e0. Then R(G,K) has the modulus l.e0. Since no confusion can arise thereby, the element 1. e in R(G, K) will be written as e, and whenever it is convenient, the elements ...

متن کامل

Group Algebras Whose Group of Units Is Powerful

A p-group is called powerful if every commutator is a product of p th powers when p is odd and a product of fourth powers when p = 2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.

متن کامل

Group Algebras Whose Involutory Units Commute

Abstract. Let K be a field of characteristic 2 and G a nonabelian locally finite 2-group. Let V (KG)be the group of units with augmentation 1 in the group algebra KG. An explicit list of groups is given, and it is proved that all involutions in V (KG) commute with each other if and only if G is isomorphic to one of the groups on this list. In particular, this property depends only on G and not ...

متن کامل

Arithmetic Rigidity and Units in Group Rings

For any finite group G the group U(Z[G]) of units in the integral group ring Z[G] is an arithmetic group in a reductive algebraic group, namely the Zariski closure of SL1(Q[G]). In particular, the isomorphism type of the Q-algebra Q[G] determines the commensurability class of U(Z[G]); we show that, to a large extent, the converse is true. In fact, subject to a certain restriction on the Q-repre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 1978

ISSN: 0003-889X,1420-8938

DOI: 10.1007/bf01226485